Solving DSGE models: an example. Hansens Real Business Cycle Model IAMA, Lecture 5

Prof. H. Uhlig¹

¹Humboldt Universität zu Berlin uhlig@wiwi.hu-berlin.de

Winter 2006/07

Prof. H. Uhlig IAMA: Lecture 5

イロト イヨト イヨト イヨト

Outline

- The solution strategy
 - Overview
- 2 Hansens benchmark Real Business Cycle Model
 - The model
 - Rational expectations
 - Labor supply
- 3 The solution steps
 - Step 1: find the FONCs
 - Step 2: Calculate the steady state
 - Step 3: Loglinearize
 - Step 4: Solve for the RLOM
 - Step 5: Calculate impulse responses
 - Representations
 - Alternative representations

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The solution strategy

Hansens benchmark Real Business Cycle Model The solution steps Representations

Overview

Outline

- The solution strategy
 - Overview
- 2 Hansens benchmark Real Business Cycle Model
 - The model
 - Rational expectations
 - Labor supply
- 3 The solution steps
 - Step 1: find the FONCs
 - Step 2: Calculate the steady state
 - Step 3: Loglinearize
 - Step 4: Solve for the RLOM
 - Step 5: Calculate impulse responses
 - Representations
 - Alternative representations

イロト イポト イヨト イヨト

Overview

The solution strategy

The solution strategy for a model works as follows:

- 1. Find the first order necessary conditions
- 2. Calculate the steady state
- 3. Loglinearize around the steady state
- 4. Solve for the recursive law of motion
- 5. Calculate impulse responses and (HP-filtered) moments

We will execute this strategy, using Hansens real business cycle model as particular example.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The model Rational expectations Labor supply

Outline

- The solution strategy
- Overview
- 2 Hansens benchmark Real Business Cycle Model
 - The model
 - Rational expectations
 - Labor supply
- 3 The solution steps
 - Step 1: find the FONCs
 - Step 2: Calculate the steady state
 - Step 3: Loglinearize
 - Step 4: Solve for the RLOM
 - Step 5: Calculate impulse responses
 - Representations
 - Alternative representations

3

The model Rational expectations Labor supply

Hansens benchmark Real Business Cycle Model

$$\max E\left[\sum_{t=0}^{\infty}\beta^t(\log c_t - An_t)\right]$$

s.t.

$$c_t + k_t = \bar{\gamma} e^{z_t} k_{t-1}^{\theta} n_t^{1-\theta} + (1-\delta) k_{t-1}$$

and

$$\mathbf{z}_t = \rho \mathbf{z}_{t-1} + \epsilon_t, \ \epsilon_t \sim N(\mathbf{0}, \sigma^2) \ i.i.d.$$

where c_t is consumption, n_t is labor, k_t is capital, $\gamma_t = \bar{\gamma} e^{z_t}$ is total factor productivity (TFP).

э.

The model Rational expectations Labor supply

Hansens benchmark Real Business Cycle Model

Define, for convenience;

output:
$$y_t = \bar{\gamma} e^{z_t} k_{t-1}^{\theta} n_t^{1-\theta}$$

return: $R_t = \theta \frac{y_t}{k_{t-1}} + 1 - \delta$

See:

- Hansen, G., "Indivisible Labor and the Business Cycle," Journal of Monetary Economics, 1985, 16, 309-27.
- Cooley, editor, Frontiers of Business Cycle Research, Princeton University Press, 1995.

イロト イポト イヨト イヨト

The model Rational expectations Labor supply

Outline

- The solution strategy
- Overview

2 Hansens benchmark Real Business Cycle Model

The model

Rational expectations

Labor supply

3 The solution steps

- Step 1: find the FONCs
- Step 2: Calculate the steady state
- Step 3: Loglinearize
- Step 4: Solve for the RLOM
- Step 5: Calculate impulse responses
- Representations
 - Alternative representations

ヘロト ヘアト ヘビト ヘビト

3

The model Rational expectations Labor supply

Rational expectations

 We assume that the social planner chooses ct, kt, nt etc., using all available information at date t, and forming rational expectations about the future.

۲

Rational expectations are the mathematical expectations, using all available information

 Rational expectations only "live in" a model, in which the stochastic nature of all variables is clearly spelled out.

The model Rational expectations Labor supply

Rational expectations

Example: dice role.

• Dice 1, date *t*: X_t . Dice 2, date t + 1: Y_{t+1} . Sum: $S_{t+1} = X_t + Y_{t+1}$.

•
$$E_{t-1}[S_{t+1}] = 7$$
. $E_t[S_{t+1}] = 3.5 + X_t$.
 $E_{t+1}[S_{t+1}] = X_t + Y_{t+1}$.

• E.g. $X_t = 2$, $Y_{t+1} = 1$. Then $E_{t-1}[S_{t+1}] = 7$, $E_t[S_{t+1}] = 5.5$, $E_{t+1}[S_{t+1}] = 3$.

Example: AR(1)

•
$$\mathbf{z}_{t+1} = \rho \mathbf{z}_t + \epsilon_{t+1}, \mathbf{E}_t[\epsilon_{t+1}] = \mathbf{0}.$$

• Then: $E_t[z_{t+1}] = \rho z_t$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The model Rational expectations Labor supply

Outline

- The solution strategy
- Overview

2 Hansens benchmark Real Business Cycle Model

- The model
- Rational expectations
- Labor supply

The solution steps

- Step 1: find the FONCs
- Step 2: Calculate the steady state
- Step 3: Loglinearize
- Step 4: Solve for the RLOM
- Step 5: Calculate impulse responses
- Representations
 - Alternative representations

ヘロト ヘアト ヘビト ヘビト

3

The model Rational expectations Labor supply

Labor lotteries and labor supply

 We assume a very elastic labor supply for aggregate labor n_t,

$$u_t = \log(c_t) - An_t$$

- ... which turns out to be needed in order to quantitatively explain observed employment fluctuations.
- However, we typically imagine individual labor elasticity to be small.
- This can be true simultaneously by considering **labor lotteries**.
- Source: Richard Rogerson, "Indivisible Labor, Lotteries and Equilibrium," Journal of Monetary Economics; 21(1), January 1988, 3-16.

The model Rational expectations Labor supply

Labor lotteries and labor supply

- Individual labor supply \tilde{n}_t may be based on some utility function $u(c_t) + v(\tilde{n}_t)$.
- Suppose that
 - labor is **indivisible**: agents either have a job or do not, $\tilde{n}_t = 0$ or $\tilde{n}_t = n^*$.
 - Agents are assigned to jobs according to a lottery, with probability π_t .
 - Shirking, moral hazard etc. are not possible.
 Unemployment insurance is perfect, and consumption c_t is independent of job status.
 - Total labor supplied: $n_t = \pi_t n^*$
 - Normalization: v(0) = 0, $v(n^*)/n^* = : -A < 0$.
- Expected utility:

$$E[u(c_t) + v(\tilde{n}_t)] = u(c_t) + \pi_t v(n^*) = u(c_t) - An_t$$

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

イロト イポト イヨト イヨト

Outline

- The solution strategy
 - Overview
- 2 Hansens benchmark Real Business Cycle Model
 - The model
 - Rational expectations
 - Labor supply
- 3 The solution steps
 - Step 1: find the FONCs
 - Step 2: Calculate the steady state
 - Step 3: Loglinearize
 - Step 4: Solve for the RLOM
 - Step 5: Calculate impulse responses
 - Representations
 - Alternative representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

æ

Step 1:

Find the first-order necessary conditions (FONCS)

• Form the Lagrangian

$$L = \max E \left[\sum_{t=0}^{\infty} \beta^{t} ((\log c_{t} - An_{t}) -\lambda_{t} \left(c_{t} + k_{t} - \bar{\gamma} e^{z_{t}} k_{t-1}^{\theta} n_{t}^{1-\theta} - (1-\delta)k_{t-1} \right) \right]$$

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses.

イロン イボン イヨン ・

3

Find the first-order necessary conditions...

• Differentiate:

$$\begin{aligned} \frac{\partial L}{\partial c_t} : & \frac{1}{c_t} = \lambda_t \\ \frac{\partial L}{\partial n_t} : & A = \lambda_t (1 - \theta) \frac{y_t}{n_t} \\ \frac{\partial L}{\partial \lambda_t} : & c_t + k_t = \bar{\gamma} e^{z_t} k_{t-1}^{\theta} n_t^{1-\theta} + (1 - \delta) k_{t-1} \\ \frac{\partial L}{\partial k_t} : & \lambda_t = \beta E_t [\lambda_{t+1} R_{t+1}] \end{aligned}$$

The last equation needs explanation.

 The solution strategy
 Step 1: find the FONCs

 Hansens benchmark Real Business Cycle Model
 Step 2: Calculate the steady state

 The solution steps
 Step 3: Loglinearize

 Representations
 Step 4: Solve for the RLOM

 Step 5: Calculate impulse responses

Differentiating with respect to k_t

 Write out the objective at date *t*: for the future, one can only form conditional expectations *E_t*[·]. "Telescope" out the Lagrangian:

$$L = \dots + \beta^{t} ((\log c_{t} - An_{t})) \\ -\lambda_{t} \left(c_{t} + k_{t} - \bar{\gamma} e^{z_{t}} k_{t-1}^{\theta} n_{t}^{1-\theta} - (1-\delta)k_{t-1} \right) \\ + E_{t} \left[\beta^{t+1} ((\log c_{t+1} - An_{t+1})) \\ -\lambda_{t+1} \left(c_{t+1} + k_{t+1} - \bar{\gamma} e^{z_{t+1}} k_{t}^{\theta} n_{t+1}^{1-\theta} - (1-\delta)k_{t} \right) \right] + \dots$$

Differentiate with respect to k_t:

$$0 = \beta^{t} \lambda_{t} - E_{t} \left[\beta^{t+1} \lambda_{t+1} \left(\theta \frac{y_{t+1}}{k_{t}} + 1 - \delta \right) \right]$$

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

ヘロト ヘワト ヘヨト ヘ

-≣->

Differentiating with respect to k_t

Sort terms and use

$$R_{t+1} = \theta \frac{y_{t+1}}{k_t} + 1 - \delta$$

to find

$$\lambda_t = \beta E_t[\lambda_{t+1} R_{t+1}]$$

• This equation is called an **Euler equation** and also the **Lucas asset pricing equation**.

The solution strategy Hansens benchmark Real Business Cycle Model The solution steps Representations The solution steps Representations

Collecting equations

First order conditions and a definition:

$$\frac{1}{c_t} = \lambda_t$$

$$A = \lambda_t (1 - \theta) \frac{y_t}{n_t}$$

$$R_t = \theta \frac{y_t}{k_{t-1}} + 1 - \delta$$

$$\lambda_t = \beta E_t [\lambda_{t+1} R_{t+1}]$$

Technology and Feasibility constraints:

$$y_t = \bar{\gamma} e^{z_t} k_{t-1}^{\theta} n_t^{1-\theta}$$

$$c_t + k_t = y_t + (1-\delta) k_{t-1}$$

$$z_t = \rho z_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, \sigma^2) \ i.i.d.$$

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

ヘロト 人間 とくほ とくほ とう

Outline

- The solution strategy
 - Overview
- 2 Hansens benchmark Real Business Cycle Model
 - The model
 - Rational expectations
 - Labor supply
- 3 The solution steps
 - Step 1: find the FONCs
 - Step 2: Calculate the steady state
 - Step 3: Loglinearize
 - Step 4: Solve for the RLOM
 - Step 5: Calculate impulse responses
 - Representations
 - Alternative representations

Representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

æ

Step 2: Calculate the steady state

At the steady state, all variables are constant.

Prof. H. Uhlig IAMA: Lecture 5

The solution strategy Hansens benchmark Real Business Cycle Model The solution steps Representations The solution steps Representations

Take all equations ...

First order conditions and a definition:

$$\frac{1}{c_t} = \lambda_t$$

$$A = \lambda_t (1 - \theta) \frac{y_t}{n_t}$$

$$R_t = \theta \frac{y_t}{k_{t-1}} + 1 - \delta$$

$$\lambda_t = \beta E_t [\lambda_{t+1} R_{t+1}]$$

Technology and Feasibility constraints:

$$y_t = \bar{\gamma} e^{z_t} k_{t-1}^{\theta} n_t^{1-\theta}$$

$$c_t + k_t = y_t + (1-\delta) k_{t-1}$$

$$z_t = \rho z_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, \sigma^2) \ i.i.d.$$

Representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

... and drop the time subscripts.

First order conditions and a definition:

$$\begin{aligned} \frac{1}{\bar{c}} &= \bar{\lambda} \\ A &= \bar{\lambda}(1-\theta)\frac{\bar{y}}{\bar{n}} \\ \bar{R} &= \theta\frac{\bar{y}}{\bar{k}} + 1 - \delta \\ \bar{\lambda} &= \beta\bar{\lambda}\bar{R} \end{aligned}$$

Technology and Feasibility constraints:

$$\bar{\mathbf{y}} = \bar{\gamma} \mathbf{e}^{\bar{\mathbf{z}}} \bar{k}^{\theta} \bar{n}^{1-\theta} \bar{\mathbf{c}} + \bar{k} = \bar{\mathbf{y}} + (1-\delta) \bar{k} \bar{\mathbf{z}} = \rho \bar{\mathbf{z}}$$

Parameters

- Calibration: $\theta = 0.4$, $\delta = 0.012$, $\rho = 0.95$, $\sigma_{\epsilon} = 0.007$, $\beta = 0.987$, $\bar{\gamma} = 1$, *A* so that $\bar{n} = 1/3$ (see Cooley, *Frontiers...*).
- 2 Estimation:
 - GMM: mimics calibration, see Christiano and Eichenbaum, "Current Real-Business Cycle Theories and Aggregate Labor Market Fluctuations," American Economic Review, vol 82, no. 3, 430 - 450.
 - Maximum Likelihood: see e.g. Leeper and Sims, "Toward a Modern Macroeconomic Model Usable for Policy Analysis," NBER Macroeconomics Annual, 1994, 81 - 177.

With numbers for the parameters, the steady state can be calculated explicitely.

The solution strategy Hansens benchmark Real Business Cycle Model The solution steps Representations The solution step 5: Calculate the steady state Step 4: Ind the FONCS Step 2: Calculate the steady state Step 4: Junt the FONCS Step 2: Calculate the steady state Step 4: Solve for the RLOM Step 5: Calculate impulse respons

Explicit calculation

From the production function,

$$\bar{y} = \bar{\gamma} e^{\bar{z}} \bar{k}^{\theta} \bar{n}^{1-\theta}$$

we get

$$ar{y} = \left(ar{\gamma} e^{ar{z}} \left(rac{ar{y}}{ar{k}}
ight)^{- heta}
ight)^{rac{1}{1- heta}}ar{n}$$

イロト イヨト イヨト イヨト

3

Representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses.

(日) (同) (目) (日)

3

Explicit calculation: \bar{n} given, solve for A.

1.
$$\bar{R} = \frac{1}{\beta}$$

2. $\frac{\bar{y}}{\bar{k}} = \frac{\bar{R}-1+\delta}{\theta}$
3. $\bar{y} = \left(\bar{\gamma}e^{\bar{z}}\left(\frac{\bar{y}}{\bar{k}}\right)^{-\theta}\right)^{\frac{1}{1-\theta}}\bar{n}$
4. $\bar{k} = \left(\frac{\bar{y}}{\bar{k}}\right)^{-1}\bar{y}$
5. $\bar{c} = \bar{y} - \delta\bar{k}$
6. $\bar{\lambda} = \frac{1}{\bar{c}}$
7. $A = \bar{\lambda}(1-\theta)\frac{\bar{y}}{\bar{n}}$

Representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

(日) (同) (目) (日)

3

Explicit calculation alternative: A given, solve for \bar{n} .

1.	R	=	$\frac{1}{\beta}$	5.	<u>Ē</u>	=	$\frac{\bar{y}}{\bar{k}} - \delta$
2.	$\frac{\overline{y}}{\overline{k}}$	=	$rac{ar{R}-1+\delta}{ heta}$	6.	ō	=	$\frac{1}{\lambda}$
3.	<u>y</u> ħ	=	$\left(\bar{\gamma}\boldsymbol{\theta}^{\bar{\boldsymbol{z}}}\left(\frac{\bar{\boldsymbol{y}}}{\bar{\boldsymbol{k}}}\right)^{-\theta}\right)^{\frac{1}{1-\theta}}$	7.	k	=	$\frac{\overline{C}}{\left(\frac{\overline{C}}{\overline{K}}\right)}$
4.	$\bar{\lambda}$	=	$rac{A}{(1- heta)\left(rac{ ilde{y}}{ ilde{n}} ight)}$	8.	ÿ	=	$\left(rac{ar{y}}{ar{k}} ight)ar{k}$

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

イロト イポト イヨト イヨト

Outline

- The solution strategy
 - Overview
- 2 Hansens benchmark Real Business Cycle Model
 - The model
 - Rational expectations
 - Labor supply

3 The solution steps

- Step 1: find the FONCs
- Step 2: Calculate the steady state

Step 3: Loglinearize

- Step 4: Solve for the RLOM
- Step 5: Calculate impulse responses
- Representations
 - Alternative representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

イロト イヨト イヨト イヨト

Step 3: Loglinearize around the steady state

- Replace the dynamic **nonlinear** equations by dynamic **linear** equations.
- Interpretation and calculation are made easier, if the equations are linear in percent deviations from the steady state.

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

<ロ> <同> <同> <三> <

The Principle of Loglinearization

For $x \approx 0$,

$$e^x \approx 1 + x$$

For x_t , let $\hat{x}_t = log(x_t/\bar{x})$ be the *log-deviation* of x_t from its steady state. Thus, $100 * \hat{x}_t$ is (approximately) the percent deviation of x_t from \bar{x} . Then,

$$x_t = \bar{x}e^{\hat{x}_t} \approx \bar{x}(1+\hat{x}_t)$$

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

イロト イヨト イヨト イヨト

Application of Loglinearization

Application: The equation

$$x_t + c_t = y_t$$

together with its steady state version

$$\bar{x} + \bar{c} = \bar{y}$$

deliver the dynamic relationship

$$\bar{x}\hat{x}_t + \bar{c}\hat{c}_t = \bar{y}\hat{y}_t$$

The solution strategy Hansens benchmark Real Business Cycle Model The solution steps Representations The solution steps Representations

Example: RBC

Do it slowly for two equations:

• The resource constraint:

$$\begin{array}{rcl} c_t + k_t &=& y_t + (1 - \delta)k_{t-1} \\ \bar{c}e^{\hat{c}_t} + \bar{k}e^{\hat{k}_t} &=& \bar{y}e^{\hat{y}_t} + (1 - \delta)\bar{k}e^{\hat{k}_{t-1}} \\ \bar{c}(1 + \hat{c}_t) + \bar{k}(1 + \hat{k}_t) &\approx& \bar{y}(1 + \hat{y}_t) + (1 - \delta)\bar{k}(1 + \hat{k}_{t-1}) \\ (\text{Note: } \bar{c} + \delta \bar{k} &=& \bar{y}) \\ \bar{c}\hat{c}_t + \bar{k}\hat{k}_t &\approx& \bar{y}\hat{y}_t + (1 - \delta)\bar{k}\hat{k}_{t-1} \end{array}$$

イロト イヨト イヨト イヨト

3

The solution strategy Hansens benchmark Real Business Cycle Model The solution steps Representations The solution steps Representations

Example: RBC

• The asset pricing equation:

$$\lambda_{t} = \beta E_{t} [\lambda_{t+1} R_{t+1}]$$

$$\bar{\lambda} e^{\hat{\lambda}_{t}} = \beta E_{t} \left[\bar{\lambda} \bar{R} e^{\hat{\lambda}_{t+1} + \hat{R}_{t+1}} \right]$$

$$1 + \hat{\lambda}_{t} \approx \beta \bar{R} E_{t} \left[1 + \hat{\lambda}_{t+1} + \hat{R}_{t+1} \right]$$
Note:
$$1 = \beta \bar{R}$$

$$\hat{\lambda}_{t} \approx E_{t} \left[\hat{\lambda}_{t+1} + \hat{R}_{t+1} \right]$$

 On "ignored" Jensen terms: can also assume joint normality of logdeviations insteady. This changes the steady state, not the dynamics.

ヘロト ヘワト ヘヨト ヘ

Representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

All loglinearized equations

#	Equation	Loglinearized
(i)	$\frac{1}{c_t} = \lambda_t$	$0 = \hat{\mathbf{c}}_t + \hat{\lambda}_t$
(ii)	$\mathbf{A} = \lambda_t (1 - \theta) \frac{y_t}{n_t}$	$0 = \hat{\lambda}_t + \hat{y}_t - \hat{n}_t$
(iii)	$R_t = \theta \frac{y_t}{k_{t-1}} + 1 - \delta$	$0 = -\bar{R}\hat{R}_t + \theta \frac{\bar{y}}{k} \left(\hat{y}_t - \hat{k}_{t-1} \right)$
(iv)	$y_t = ar{\gamma} \mathbf{e}^{\mathbf{z}_t} k_{t-1}^{ heta} n_t^{1- heta}$	$0 = -\hat{y}_t + z_t + \theta \hat{k}_{t-1} + (1-\theta)\hat{n}_t$
(v)	$c_t + k_t = y_t + (1 - \delta)k_{t-1}$	$0 = -\bar{\mathbf{c}}\hat{\mathbf{c}}_t - \bar{k}\hat{k}_t + \bar{\mathbf{y}}\hat{\mathbf{y}}_t + (1-\delta)\bar{k}\hat{k}_{t-1}$
(vi)	$\lambda_t = \beta E_t[\lambda_{t+1}R_{t+1}]$	$0 = -\hat{\lambda}_t + E_t[\hat{\lambda}_{t+1} + \hat{R}_{t+1}]$
(vii)	$\mathbf{Z}_{t+1} = \rho \mathbf{Z}_t + \epsilon_{t+1}$	$\mathbf{Z}_{t+1} = \rho \mathbf{Z}_t + \epsilon_{t+1}$

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

イロト イポト イヨト イヨト

Outline

- The solution strategy
 - Overview
- 2 Hansens benchmark Real Business Cycle Model
 - The model
 - Rational expectations
 - Labor supply

3 The solution steps

- Step 1: find the FONCs
- Step 2: Calculate the steady state
- Step 3: Loglinearize
- Step 4: Solve for the RLOM
- Step 5: Calculate impulse responses
- Representations
 - Alternative representations

The solution strategy Hansens benchmark Real Business Cycle Model The solution steps Representations The solution steps Representations

- State variables are: k_{t-1} , z_t (or, alternatively, k_{t-1} and z_{t-1}).
- The dynamics of the model should be describable by a recursive law of motion (RLOM),

$$\begin{aligned} \lambda_t &= f_{(\lambda)}(k_{t-1}, z_t) \\ k_t &= f_{(k)}(k_{t-1}, z_t) \\ y_t &= f_{(y)}(k_{t-1}, z_t) \end{aligned}$$

etc.

・ロト ・ 日 ・ ・ ヨ ト ・

The solution strategy Hansens benchmark Real Business Cycle Model The solution steps Representations The solution steps Representations

• Assume that the RLOM is linear in the log-deviations,

$$\hat{\lambda}_t = \eta_{\lambda k} \hat{k}_{t-1} + \eta_{\lambda z} \mathbf{z}_t \hat{k}_t = \eta_{kk} \hat{k}_{t-1} + \eta_{kz} \mathbf{z}_t \hat{y}_t = \eta_{yk} \hat{k}_{t-1} + \eta_{yz} \mathbf{z}_t$$

etc. for coefficients $\eta_{\lambda k}$, $\eta_{\lambda z}$, etc.

 To make life simpler here, we shall try to reduce the system to only k and λ (one doesn't have to).

イロト イヨト イヨト イヨト

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

∃ <2 <</p>

Simplify:

- Note: $\hat{y}_t = \frac{1}{\theta} z_t + \hat{k}_{t-1} + \frac{1-\theta}{\theta} \hat{\lambda}_t$
- Abbreviations:

$$\alpha_{1} = \frac{\bar{y}}{\bar{k}} + (1 - \delta)$$

$$\alpha_{2} = \frac{\bar{c}}{\bar{k}} + \frac{1 - \theta}{\theta} \frac{\bar{y}}{\bar{k}}$$

$$\alpha_{3} = \frac{\bar{y}}{\theta \bar{k}}$$

$$\alpha_{4} = 0$$

$$\alpha_{5} = 1 + (1 - \theta) \frac{\bar{y}}{\bar{R}\bar{k}}$$

$$\alpha_{6} = \frac{\bar{y}}{\bar{R}\bar{k}}$$

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

Obtaining the solution

 We obtain the following first-order two-dimensional stochastic difference equation:

$$\mathbf{0} = -\hat{\mathbf{k}}_t + \alpha_1 \hat{\mathbf{k}}_{t-1} + \alpha_2 \hat{\lambda}_t + \alpha_3 \mathbf{z}_t \tag{1}$$

$$0 = E_t[-\hat{\lambda}_t + \alpha_4 k_t + \alpha_5 \hat{\lambda}_{t+1} + \alpha_6 z_{t+1}]$$
(2)

$$\mathbf{z}_t = \rho \mathbf{z}_{t-1} + \epsilon_t \tag{3}$$

イロト イポト イヨト イヨト

where z_t is an exogenous stochastic process.

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

Obtaining the solution

 Compare to the following first-order two-dimensional stochastic difference equation to be studied in the lecture on difference equations:

$$\mathbf{D} = -\mathbf{x}_t + \alpha_1 \mathbf{x}_{t-1} + \alpha_2 \mathbf{y}_t + \alpha_3 \mathbf{z}_t \tag{4}$$

$$0 = E_t[-y_t + \alpha_4 x_t + \alpha_5 y_{t+1} + \alpha_6 z_{t+1}]$$
 (5)

$$\mathbf{z}_t = \rho \mathbf{z}_{t-1} + \epsilon_t \tag{6}$$

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

They are the same with $x_t = \hat{k}_t$, $y_t = \hat{\lambda}_t$.

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

The Method of Undetermined Coefficients

Postulate the recursive law of motion

$$\hat{\lambda}_t = \eta_{\lambda k} \hat{k}_{t-1} + \eta_{\lambda z} z_t \tag{7}$$

$$\hat{k}_t = \eta_{kk}\hat{k}_{t-1} + \eta_{kz}\mathbf{z}_t \tag{8}$$

・ロット (雪) ・ (目)

Plug this into equations (1) once and (2) "twice" and exploit $E_t[z_{t+1}] = \rho z_t$, so that **only the date-t-states** \hat{k}_{t-1} **and** z_t **remain**,

$$0 = (-\eta_{kk} + \alpha_1 + \alpha_2 \eta_{\lambda k}) \hat{k}_{t-1} + (-\eta_{kz} + \alpha_2 \eta_{\lambda z} + \alpha_3) z_t 0 = (-\eta_{\lambda k} + \alpha_4 \eta_{kk} + \alpha_5 \eta_{\lambda k} \eta_{kk}) \hat{k}_{t-1} + (-\eta_{\lambda z} + \alpha_4 \eta_{kz} + \alpha_5 \eta_{\lambda k} \eta_{kz} + (\alpha_5 \eta_{\lambda z} + \alpha_6) \rho) z_t$$

Compare coefficients

 The solution strategy
 Step 1: find the FONCs

 Hansens benchmark Real Business Cycle Model
 Step 2: Calculate the steady state

 The solution steps
 Representations

 Representations
 Step 4: Solve for the RLOM

 Step 5: Calculate impulse responses

On plugging in twice...

Plugging

$$\hat{\lambda}_t = \eta_{\lambda k} \hat{k}_{t-1} + \eta_{\lambda z} z_t, \quad \hat{k}_t = \eta_{kk} \hat{k}_{t-1} + \eta_{kz} z_t \quad \rho z_t = E_t[z_{t+1}]$$

twice into

(

$$D = E_t[-\hat{\lambda}_t + \alpha_4 \hat{k}_t + \alpha_5 \hat{\lambda}_{t+1} + \alpha_6 z_{t+1}]$$

$$= E_t[-(\eta_{\lambda k} \hat{k}_{t-1} + \eta_{\lambda z} z_t) + \alpha_4(\eta_{kk} \hat{k}_{t-1} + \eta_{kz} z_t) + \alpha_5(\eta_{\lambda k} \hat{k}_t + \eta_{\lambda z} z_{t+1}) + \alpha_6 z_{t+1}]$$

$$= E_t[-\eta_{\lambda k} \hat{k}_{t-1} - \eta_{\lambda z} z_t + \alpha_4 \eta_{kk} \hat{k}_{t-1} + \alpha_4 \eta_{kz} z_t) + \alpha_5 \eta_{\lambda k} (\eta_{kk} \hat{k}_{t-1} + \eta_{kz} z_t) + (\alpha_5 \eta_{\lambda z} + \alpha_6) z_{t+1}]$$

$$= (-\eta_{\lambda k} + \alpha_4 \eta_{kk} + \alpha_5 \eta_{\lambda k} \eta_{kk}) \hat{k}_{t-1} + (-\eta_{\lambda z} + \alpha_4 \eta_{kz} + \alpha_5 \eta_{\lambda k} \eta_{kz} + (\alpha_5 \eta_{\lambda z} + \alpha_6) \rho) z_t$$

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

イロト イヨト イヨト イヨト

Comparing coefficients

• On \hat{k}_{t-1} :

$$0 = -\eta_{kk} + \alpha_1 + \alpha_2 \eta_{\lambda k}$$

$$0 = -\eta_{\lambda k} + \alpha_4 \eta_{kk} + \alpha_5 \eta_{\lambda k} \eta_{kk}$$

One gets the characteristic quadratic equation

$$0 = p(\eta_{kk}) = \eta_{kk}^2 - \left(\alpha_1 - \frac{\alpha_2}{\alpha_5}\alpha_4 + \frac{1}{\alpha_5}\right)\eta_{kk} + \frac{\alpha_1}{\alpha_5} \qquad (9)$$

Representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM

< ロ > < 同 > < 三 >

Solving the characteristic equation

Solutions:

$$\eta_{kk} = \frac{1}{2} \left(\left(\alpha_1 - \frac{\alpha_2}{\alpha_5} \alpha_4 + \frac{1}{\alpha_5} \right) + \sqrt{\left(\alpha_1 - \frac{\alpha_2}{\alpha_5} \alpha_4 + \frac{1}{\alpha_5} \right)^2 - 4\frac{\alpha_1}{\alpha_5}} \right)$$
(10)

Choose the stable root $\mid \eta_{kk} \mid <$ 1. There is at most one stable root, if

$$\eta_{kk,1}\eta_{kk,2} \mid = \mid \frac{\alpha_1}{\alpha_5} \mid > 1$$

With η_{kk} , calculate

$$\eta_{\lambda k} = \frac{\eta_{\lambda \lambda} - \alpha}{\alpha_2}$$

Prof. H. Uhlig IAMA: Lecture 5

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Comparing coefficients

• On *z*_{*t*}:

$$0 = -\eta_{kz} + \alpha_2 \eta_{\lambda z} + \alpha_3$$

$$0 = -\eta_{\lambda z} + \alpha_4 \eta_{kz} + \alpha_5 \eta_{\lambda k} \eta_{kz} + (\alpha_5 \eta_{\lambda z} + \alpha_6) \rho$$

Solution:

$$\eta_{\lambda_{z}} = \frac{\alpha_{4}\alpha_{3} + \alpha_{5}\eta_{\lambda k}\alpha_{3} + \alpha_{6}\rho}{1 - \alpha_{4}\alpha_{2} - \alpha_{5}\eta_{\lambda k}\alpha_{2} - \alpha_{5}\rho}$$
$$\eta_{kz} = \alpha_{2}\eta_{\lambda z} + \alpha_{3}$$

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

Outline

- The solution strategy
 - Overview
- 2 Hansens benchmark Real Business Cycle Model
 - The model
 - Rational expectations
 - Labor supply

3 The solution steps

- Step 1: find the FONCs
- Step 2: Calculate the steady state
- Step 3: Loglinearize
- Step 4: Solve for the RLOM
- Step 5: Calculate impulse responses
- Representations
 - Alternative representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

< ロ > < 同 > < 三 > .

Step 5: Calculate impulse responses and (HP-filtered) moments

- Impulse responses: will be explained now.
- HP-filtered moments: will be discussed later.

Representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

イロト イヨト イヨト イヨト

Impulse Response Functions: response to a <u>shock</u> in z_t

) Set
$$z_0 = 0, \epsilon_1 = 1, \epsilon_t = 0, t > 1$$

2 Calculate
$$z_t = \rho^t$$

3 Set
$$\hat{k}_0 = 0$$
.

Calculate recursively

$$\hat{k}_t = \eta_{kk}\hat{k}_{t-1} + \eta_{kz}z_t$$

With that, calculate

$$\hat{\lambda}_t = \eta_{\lambda k} \hat{k}_{t-1} + \eta_{\lambda z} z_t$$

Representations

Step 1: find the FONCs Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

3

Results: Impulse Responses to shocks

Prof. H. Uhlig IAMA: Lecture 5

Step 5: Calculate impulse responses

ヘロト ヘロト ヘヨト

Impulse Response Functions: response to an initial deviation of the state k_t from its steady state.

1 Set
$$z_t = 0, t \ge 1$$

2 Set
$$\hat{k}_0 = 1$$
.

Calculate recursively

$$\hat{k}_t = \eta_{kk}\hat{k}_{t-1}$$

With that, calculate

$$\hat{\lambda}_t = \eta_{\lambda k} \hat{k}_{t-1}$$

Step 2: Calculate the steady state Step 3: Loglinearize Step 4: Solve for the RLOM Step 5: Calculate impulse responses

3

Results: Impulse Responses to capital deviations

Prof. H. Uhlig IAMA: Lecture 5

Alternative representations

イロト イポト イヨト イヨト

Outline

- The solution strategy
 - Overview
- 2 Hansens benchmark Real Business Cycle Model
 - The model
 - Rational expectations
 - Labor supply
- 3 The solution steps
 - Step 1: find the FONCs
 - Step 2: Calculate the steady state
 - Step 3: Loglinearize
 - Step 4: Solve for the RLOM
 - Step 5: Calculate impulse responses
 - Representations
 - Alternative representations

Alternative representations

Recall: the loglinearized equations

#	Equation	Loglinearized
(i)	$\frac{1}{c_t} = \lambda_t$	$0 = \hat{\mathbf{c}}_t + \hat{\lambda}_t$
(ii)	$\mathbf{A} = \lambda_t (1 - \theta) \frac{\mathbf{y}_t}{n_t}$	$0 = \hat{\lambda}_t + \hat{y}_t - \hat{n}_t$
(iii)	$R_t = \theta \frac{y_t}{k_{t-1}} + 1 - \delta$	$0 = -\bar{R}\hat{R}_t + \theta \frac{\bar{y}}{k} \left(\hat{y}_t - \hat{k}_{t-1} \right)$
(iv)	$y_t = ar{\gamma} e^{z_t} k_{t-1}^{ heta} n_t^{1- heta}$	$0 = -\hat{y}_t + z_t + \theta \hat{k}_{t-1} + (1-\theta)\hat{n}_t$
(v)	$c_t + k_t = y_t + (1 - \delta)k_{t-1}$	$0 = -\bar{\mathbf{c}}\hat{\mathbf{c}}_t - \bar{k}\hat{k}_t + \bar{\mathbf{y}}\hat{\mathbf{y}}_t + (1-\delta)\bar{k}\hat{k}_{t-1}$
(vi)	$\lambda_t = \beta E_t[\lambda_{t+1}R_{t+1}]$	$0 = -\hat{\lambda}_t + E_t[\hat{\lambda}_{t+1} + \hat{R}_{t+1}]$
(vii)	$\mathbf{Z}_{t+1} = \rho \mathbf{Z}_t + \epsilon_{t+1}$	$\mathbf{Z}_{t+1} = \rho \mathbf{Z}_t + \epsilon_{t+1}$

Alternative representations

A representation of the problem

There is an endogenous state vector x_t , size $m \times 1$, a list of other endogenous variables y_t , size $n \times 1$, and a list of exogenous stochastic processes z_t , size $k \times 1$. The equilibrium relationships between these variables are

$$0 = Ax_{t} + Bx_{t-1} + Cy_{t} + Dz_{t}$$
(11)

$$0 = E_{t}[Fx_{t+1} + Gx_{t} + Hx_{t-1} + Jy_{t+1} + Ky_{t} + Lz_{t+1} + Mz_{t}]$$

$$z_{t+1} = Nz_{t} + \epsilon_{t+1}; \quad E_{t}[\epsilon_{t+1}] = 0,$$

where it is assumed that *C* is of size $l \times n$, $l \ge n$ and of rank *n*, that *F* is of size $(m + n - l) \times n$, and that *N* has only stable eigenvalues.

イロト イポト イヨト イヨト

Alternative representations

Example: RBC

Variables:

$$x_{t} = [\text{capital}] = [\hat{k}_{t}], \ y_{t} = \begin{bmatrix} \text{Lagrangian} \\ \text{consumption} \\ \text{output} \\ \text{labor} \\ \text{interest} \end{bmatrix} = \begin{bmatrix} \hat{\lambda}_{t} \\ \hat{c}_{t} \\ \hat{y}_{t} \\ \hat{n}_{t} \\ \hat{R}_{t} \end{bmatrix}$$

and

$$z_t = [\text{technology}] = [z_t]$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Alternative representations

Example: RBC

Matrices:

$$A = \begin{bmatrix} 0\\0\\0\\-\bar{k}\end{bmatrix}, B = \begin{bmatrix} 0\\0\\-\theta\bar{y}\\\theta\\(1-\delta)\bar{k}\end{bmatrix}, C = \begin{bmatrix} 1 & 1 & 0 & 0 & 0\\1 & 0 & 1 & -1 & 0\\0 & 0 & \theta\bar{y}\\0 & 0 & -\bar{R}\\0 & 0 & -1 & (1-\theta) & 0\\0 & -\bar{c} & \bar{y} & 0 & 0 \end{bmatrix}$$

and

$$F = [0], G = [0], H = [0], J = [1, 0, 0, 0, 1],$$

 $K = [-1, 0, 0, 0, 0], L = [0], M = [0], N = [\rho]$

・ロト ・ 同ト ・ ヨト ・ ヨト

Alternative representations

Alternative representations 1

Redefine the system as

$$\begin{split} \tilde{\mathbf{X}}_t &= \begin{bmatrix} \mathbf{X}_t \\ \mathbf{y}_t \end{bmatrix}, \tilde{\mathbf{F}} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{F} & J \end{bmatrix}, \tilde{\mathbf{G}} = \begin{bmatrix} \mathbf{A} & \mathbf{C} \\ \mathbf{G} & \mathbf{K} \end{bmatrix}, \\ \tilde{\mathbf{H}} &= \begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{H} & \mathbf{0} \end{bmatrix}, \tilde{\mathbf{L}} = \begin{bmatrix} \mathbf{0} \\ \mathbf{L} \end{bmatrix}, \tilde{\mathbf{M}} = \begin{bmatrix} \mathbf{D} \\ \mathbf{M} \end{bmatrix}, \end{split}$$

 The system can then be rewritten as a second-order stochastic matrix difference equation,

$$0 = E_t \left[F \tilde{x}_{t+1} + \tilde{G} \tilde{x}_t + \tilde{H} \tilde{x}_{t-1} + \tilde{L} z_{t+1} + \tilde{M} z_t \right]$$

$$z_t = N z_{t-1} + \epsilon_t; E_{t-1}[\epsilon_t] = 0 + \tilde{\epsilon}_t$$

ヘロト ヘワト ヘヨト ヘ

-∃= >

Alternative representations

Alternative representations 2

Redefine the system as

$$\begin{split} \tilde{X}_{t} &= \begin{bmatrix} x_{t} \\ y_{t} \\ z_{t} \end{bmatrix}, \tilde{\epsilon}_{t} = \begin{bmatrix} 0 \\ 0 \\ \epsilon_{t} \end{bmatrix}, \\ \tilde{F} &= \begin{bmatrix} 0 & 0 & 0 \\ F & J & L \\ 0 & 0 & 0 \end{bmatrix}, \tilde{G} = \begin{bmatrix} A & C & D \\ G & K & M \\ 0 & 0 & -I_{k} \end{bmatrix}, \tilde{H} = \begin{bmatrix} B & 0 & 0 \\ H & 0 & 0 \\ 0 & 0 & N \end{bmatrix} \end{split}$$

 The system can then be rewritten as a second-order stochastic matrix difference equation,

$$0 = E_t \left[F \tilde{x}_{t+1} + \tilde{G} \tilde{x}_t + \tilde{H} \tilde{x}_{t-1} \right] + \tilde{\epsilon}_t$$

イロト イポト イヨト イヨト

Alternative representations

Alternative Representations 3

E.g. per stacking,

$$\check{\mathbf{x}}_t = \left[\begin{array}{c} \widetilde{\mathbf{x}}_t \\ \widetilde{\mathbf{x}}_{t-1} \end{array}
ight]$$

etc., one can even rewrite the system as a first-order stochastic matrix difference equation,

$$0 = E_t \left[F \check{x}_{t+1} + G \check{x}_t \right] + \check{\epsilon}_t$$

- Here, one needs to keep in mind, that some entries in x_t are predetermined, i.e. already fixed as of t 1.
- This representation is often used, e.g. in Blanchard-Kahn, Farmer, many others.

・ロット (日) (日) (日) (日)

Alternative representations

Various Representations 4

- Various representations appear in the literature.
- Which representation is most convenient? That depends on the solution approach.
- The "complicated" first representation has the advantage of focussing on a small numer of state variables.

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A